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Abstract--Surface waves with a frequency of 0.5-2.5 Hz were generated on a homogeneously fluidized bed. 
The propagation velocity and rate of attenuation of the induced pressure fluctuations were measured using 
signal averaging techniques. The measured wave velocity and attenuation rate correlated well with 
predictions based on a theory which considers the bed as an incompressible liquid with low viscosity. From 
the rate of attenuation an effective bed viscosity was calculated between 1.2 and 6.0 Pa. s. At high 
frequencies the wave generator produced high-amplitude density waves. 
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1. I N T R O D U C T I O N  

In heterogeneously fluidized beds periodic pressure fluctuations can be observed. Their 
amplitude is up to one-tenth of  the bed pressure drop and their frequencies range from 1 to 
10Hz. The pressure fluctuations induced by bubble motion have been studied extensively 
(Fan et al. 1983). Pressure fluctuations induced by surface waves have received only minor 
attention. 

Rice & Wilhelm (1958) conjectured that surface waves would propagate similarly to water waves. 
Using basic equations proposed by Anderson & Jackson (1967), Needham (1984) formulated 
equations describing two-dimensional surface waves on a fluidized bed. By assuming a uniform 
particle concentration (~) and an incompressible fluidizing gas, Needham confirmed the fluidized 
bed/water surface wave analogy. The well-known results for the propagation of surface waves on 
water are summarized in the appendix. 

To the knowledge of  the authors, the only experimental verifications were reported as early as 
1969 in Finnerty et al. (1969). They generated waves on the surface of a fluidized bed with a 
horizontally oscillating paddle. The paddle frequency was varied from 3 to 9 Hz and wavelengths 
were measured between 12 and 3 cm. The wavelengths were measured from motion pictures. This 
simple equipment did not allow for the dispersive character of  wave propagation and lacked the 
accuracy to measure the rate of  attenuation of the surface waves. The effective fluidized bed 
viscosity could not be determined. Finnerty et al. (1969) found that for paddle frequencies ranging 
from 3 to 6 Hz there was reasonable agreement between the propagation speed predicted by the 
theory on water waves and the fluidized bed experiments. 

In the present research, an accurate experimental verification of  the water wave analogy for the 
case of  moderate wavelengths with respect to propagation velocity and rate o f  attenuation is 
performed. With a wave generator suitable for the production of wavelengths of  2-0.5 m in a 
frequency range from 1 to 2 Hz, waves were generated on a homogeneously fluidized bed. In view 
of the industrial applications, it is this frequency range that is interesting because pressure 
fluctuations due to long waves (2 > 0.5 m) are present throughout the bed. The propagation 
velocity and rate of  attenuation of  the induced pressure fluctuations were determined with high 
accuracy by calculating the auto- and cross-spectral density functions. 
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Figure 1. The experimental setup. 

2. E X P E R I M E N T A L  S E T U P  

A schematic view of  the experimental setup is shown in figure 1. The fluidized bed assembly 
consisted of a bed column, a gas distributor and a plenum column. The bed and the plenum column 
were 2.0 and 0.5 m long, respectively, and had a square cross-section of 0.6 × 0.6 m 2. The gas 
distributor was a porous plate with a 4kPa  pressure drop under operating conditions. The 
fluidization air was supplied to the plenum column from a pressure vessel via a pressure-reduction 
valve and a precalibrated nozzle. 

The fluidized particles were polystyrene spheres (Shell Hostapor D unterkorn B 700). These 
specific Shell polystyrene particles could not be charged electrostatically. The size distribution was 
narrow, 90% had a diameter between 250 and 350 #m and the bulk density was 620 kg/m -3. The 
minimum fluidization velocity (Umr) was 2.3 cm/s and the minimum bubbling velocity (Umb) was 
2.6 cm/s. The bed was usually operated at 2.4 cm/s. 

The wave generator consisted of a plate, hinged at the distributor 10 cm from the nearest wall. 
A bar linkage connected the upper end of the plate to an eccentric driven by an electromotor. The 
period was measured every revolution by a counter (HP 5315-A). According to Bi6sel & Suquet 
(1951a,b), this is a suitable type of generator for surface waves of moderate wavelengths. 

Opposite the wave generator at 0.3 m above the distributor, two 0.5 m long tubes were inserted 
into the bed column. Each tube was connected to a pressure transducer (Viatran 219-15). The 
experiments were made with pressure tube openings located in one horizontal plane at horizontal 
distances of 20 and 30 cm from the neutral position of the wave generator. The two pressure 
transducer signals were sent to an HP 5432-A spectrum analyser via a dual low-pass filter. The 
analyser calculated the auto- and cross-correlation and auto- and cross-spectral density functions 
of the two pressure signals. 

3. M E T H O D  OF A N A L Y S I S  

The goal was to obtain the time delay and decay in magnitude between two pressure fluctuation 
signals measured at different distances from the wave generator. In a conventional time delay 
analysis, the cross-correlation function Rxy(Z) is calculated from two signals, x(t) and y(t) ,  using 
the expression 

lI0 Rxy(z ) = lira x(t) .  y(t + ~) dt. [1] 
T~oo ? 

The time delay between the two signals is given by the value of • at the first maximum of Rxy(t). 
Reproducible results could not be obtained by this method. The time delay can be obtained 
accurately from R~y(T) if there is, at just one frequency, a periodic oscillation in the signal (Bendat 
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Figure 2. A representative auto-spectral density function of 
the pressure fluctuation signal. 

Figure 3. Magnitude and phase-shift angle of a typical 
cross-spectral density function of the pressure fluctuation 

signal. 

& Piersol 1980). In order to verify this, the auto-correlation function Rxx(r) was calculated. This 
function is similar to Rxy(T) with y( t  + ~) replaced by x( t  + z). The Fourier transform of Rxx(Z) 
(auto-spectral density) shows the composition of the pressure signal. Figure 2 shows a representa- 
tive auto-spectral density function G~x(f) of the measured pressure fluctuation signal. Peaks occur 
at the generator frequency and its harmonics. 

Due to the dispersive propagation, in this case time delays have to be measured at each frequency 
component separately. This can be done by calculating the cross-spectral density function G~y(f). 
This is the Fourier transform of R~y(~). G~y(f) is a complex function and is usually expressed in 
terms of a magnitude and a phase-shift angle as a function of frequency: 

Gxy(f) = IG~y(f)[ " exp [ - j .  Oxy(f)] with j2 = _ 1. [2] 

The time delay z(f) ,  in seconds, between two signals at a specific frequency can be calculated from 
the phase-shift angle Oxy(f) (Bendat & Piersol 1980): 

, , , ,  Oxy(f) 
t J )  = ~ ~f. [31 

The propagation velocity is V ( f )  = A x / z ( f )  m/s (here Ax = 0.1 m). A typical measured Gxy(f) is 
given in figure 3. At the frequency interval at which the peak in IGxyl occurs, the calculated 
phase-shift angle is constant. Other frequency intervals contain noise only. With a view to accuracy, 
a bandwidth of 1 Hz, centred at the wave generator frequency, was chosen. 

The decay of the pressure fluctuation signal can be calculated for each frequency component 
from the function Gxx(f)  at two locations. The area covered by the peaks in Gxx(f)  is equal to 
the square of the pressure amplitude P at the peak frequency. The logarithmic decrement in space 
is calculated by 

In[, _P(_x).] 
P(x + Ax)J 

LDx = m -I. 
Ax 

IJMF 20/3---N 
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Figure 4. Propagation velocity of the pressure fluctuations as a function of the wave generator frequency 
in a bed with H = 0.5 m. 

4. R E S U L T S  

In this section the measured propagat ion velocities and rates of  attenuation of the induced 
pressure fluctuations will be discussed. By comparison with the theory for surface waves on a liquid, 
the effective viscosity will be determined. 

4. I. Propagation velocity 

The propagat ion velocity of  the induced pressure fluctuations measured as a function of the wave 
generator frequency in a bed with height 0.5 m is shown in figure 4. The horizontal plate amplitude 
at the surface was 20 mm and the vertical distance from the measurement points to the distributor 
was 0.3 m. It is seen that at low wave generator frequencies the propagation velocity of  surface 
waves decreases from 3 m/s at 0.5 Hz to 0.3 m/s at 1.6 Hz. In this frequency range, the measurement 
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Figure 5. Propagation velocity of surface waves as a function of the wavenumber. 
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points follow the theoretical curve for surface waves reasonably well. At low frequencies 
( f  < 1.0 Hz) the measured wave velocity is higher than predicted. 

At frequencies > 1.6 Hz, the propagation velocity increases from 0.3 m/s at 1.6 Hz to 7 m/s at 
2.5 Hz. These measured wave velocities do not correlate with the theory. Apparently, at 1.6 Hz a 
transition occurred in the type of  waves generated. Above 1.6 Hz, high-pressure fluctuations were 
measured without significant bed elevation. Instead of  surface waves, density waves were 
propagating. Obviously, the assumption of  constant particle concentration is not allowed at these 
operating conditions. Joseph (1991) suggested that the change in behaviour above 1.6 Hz was due 
to off-design operation of the wave generator. At high frequencies the horizontal velocity of  the 
generator's flat plate will exceed the local velocity induced by the surface wave; in such cases, a 
density wave will be generated. 

In figure 5 the propagation velocity is displayed as a function of  the wavenumber. Only 
measurement points obtained with wave generator frequencies < 1.6 Hz were used. Figure 5 shows 
that the propagation velocity is well-predicted by the surface wave theory for wavenumbers from 
5 to 30 m-I.  For  wavenumbers < 5 m-l ,  there is less agreement. Similar results were obtained at 
bed heights of 0.33 and 1.0 m. 

4.2. Rate of  attenuation 

Figure 6 shows the spatial rate of attenuation (LDx) of  the pressure fluctuations as a function 
of frequency. The measured LDx is displayed together with the values predicted ([A4] and [A5]) 
for three different effective viscosities with a bed depth of  0.5 m. Figure 6 shows, in the frequency 
range 1.0-1.6 Hz, good correlation of  the measured and predicted values of  LDx for an effective 
kinematic shear viscosity v =/ t / (pp~) between 5 x 10 -3 and 10 2m2/s. In the frequency range 
0.5-1.0 Hz, measuring the rate of  attenuation is troublesome due to the low damping of  waves at 
those frequencies. Above 1.6Hz, the rate of  attenuation drops to a constant value of  
LDx = 2.5 m -~. Obviously this is the LD~ of  a density wave. 

At bed heights of  0.33 and 1.0 m, similar results were obtained. The appropriate viscosity is 
between 2 x 10 -3 and 5 x 10 -3 m2/s. The LD x drops above 1.6 Hz to constant values of  2.8 and 
6.1 m -I at bed heights of  0.33 and 1.0m, respectively. 

Concluding, the kinematic shear viscosity can be estimated between 2 × 10 -3 and 10 -2 m2/s and 
the dynamic shear viscosity between 1.2 and 6 P a .  s. According to Davidson et al. (1977), "a 
reasonable estimate for the viscosity of  an ordinary fully fluidized bed may be put at about 10 
poise" ( = P a . s ) .  They base this on bubble shape experiments by Grace (1970) and Couette 
viscometer experiments by Sch~igerl et al. (1961) with particles of  diameter 220-500 p m. This value 
cited in literature agrees with our estimation of  the dynamic shear viscosity. 
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Figure 6. Rate of attenuation of the pressure fluctuations as 
a function of the wave generator frequency in a bed with 
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Recently, Brinkert & Davidson (1993) determined the viscosity by measuring the profile of a 
particle jet in a fluidized bed. For  silica-alumina particles with a diameter of  70/~ m, the viscosity 
measured was about 0.3-0.5 Pa • s. Schiiger et al. (1961) found, for silver sand with particle diameter 
72 #m, a comparable value of the viscosity of 0.5 Pa . s .  It can be concluded that the viscosity 
measurements, like the bubble shape, the particle jet and the surface wave method, lead to similar 
results for the viscosity. 

The effect of  the fluidization velocity on the results above was investigated by increasing the air 
velocity from 2.4 to 3.11 cm/s, well above the minimum bubbling velocity. This did not have a 
measurable effect on the propagation speed of rate of attenuation of the surface waves. In order 
to illustrate this, the normalized value of the measured energy density of  the pressure fluctuations 
as a function of distance and at various fluidization velocities is shown in figure 7. This shows 
clearly that (a) the results do not change if the bed regime is changed from homogeneous to 
heterogeneous and (b) the energy density of the pressure fluctuations decreases logarithmically with 
the distance from the wave generator. Hence the measurements are not disturbed by wall 
reflections. 

5. C O N C L U S I O N  

Surface waves with a wavelength of 0.5-2 m were generated on a homogeneously fluidized bed. 
In order to measure the propagation velocity and rate of attenuation of the pressure fluctuations 
induced by the surface waves at the wave generator frequency, it was necessary to use cross- and 
auto-spectral density function analyses. 

The propagation velocity of surface waves on a homogeneously fluidized bed can be predicted 
reasonably well with the theory on water waves. This is in agreement with the theory on surface 
waves on a fluidized bed as developed by Needham (1984). As these are kinematic waves, this 
conclusion does not lead to a measured material parameter of  the bed, like viscosity. The measured 
propagation velocities vary from 3 m/s at 0.5 Hz to 0.3 m/s at 1.6 Hz. 

The measured rate of attenuation was compared with the values predicted by the theory on 
surface waves on an incompressible liquid. Agreement was found for effective dynamic shear 
viscosities between 1.2 and 6.0 Pa • s. This is of the same order of magnitude as values cited in the 
literature. 

The results are not affected by a change in the fluidization regime from homogeneous to 
heterogeneous. 

A transition from surface to density waves occurred at a wave generator frequency of 1.6 Hz 
due to off-design operation of  the wave generator. 
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A P P E N D I X  

The well-known results for the propagation of surface waves with small amplitudes on a liquid 
are summarized here. Waves will be studied that are propagating in the x-direction with surface 
elevation r/(x, t), amplitude a, radial frequency 09, wavelength ), and wavenumber k =2n/2  
(a/2 ~ 1): 

r/(x, t) = a" cos(kx - o9t) m. [A1] 

In a bed with depth H these waves propagate with velocity 

V = ~-  = - m / s .  [A21 

These waves induce periodic pressure fluctuations P in the bed at a distance z from the bottom, 

given by cosh(kz) 
P = a • pp" tx cosh(kH) "cos(kx - o9t) N/m 2. [A3] 

Possible dissipative mechanisms are assumed to have effects analogous to those on surface waves 
on an incompressible liquid. A term/~ • Av is introduced in the particle momentum-conservation 
equation. An effective dynamic shear viscosity of the bed is then defined by #. In Lighthill (1978) 
or Keulegan (1959) it is shown that the logarithmic decrement in time (LD,) of waves propagating 
on the surface of an incompressible liquid is 

L D t = 2 . / a . k :  //2 [ 1  k 1 s_,. [A4] 
- -  + : ~ :  ~ + sinh(2kH) 

The first right-hand term of [A4] is due to the viscous forces influencing the motion of the main 
body of the bed. The first term in the square brackets is introduced because of the fact that the 
bed has a finite width (B) with a boundary layer at the two side walls. The second term represents 
the action of the viscous forces in the boundary layer at the bottom of the bed. 

In the experiments it was only possible to measure the spatial logarithmic decrement LDx. But 
from Gaster (1963), it is known that the relation between LD, and LDx is 

LDx = LD,(~) m-'.  [A5] 

Using [A4] and [A5] the spatial logarithmic decrement LDx is found as a function of o9 and k with 
parameters ~t, pp,/~, B and H. The former three parameters are combined into a single parameter, 
the effective kinematic viscosity v = I~/(~tpp). 


